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Abstract

We consider existence of solutions to initial-value
problems for second-order singular differential equations.
We observe that the existence can be demonstrated in terms
of simple initial-value problem. Local existence and
uniqueness of solutions are proven. Under the conditions
which are weaker than previously known conditions.
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Introduction

In this paper, we study the singular initial value problems
(IVPs) of the type

y' +2t7ly +y"(t) =0,
y(0)=1,y(0) =0, M)

have seeked the concentration of many mathematicians and
physicists. Our aim of this paper to study the more general
IVPs of the form

y +p@)y +q(t,y®) =0,
y(0)=2a,y(0)=bt>0 (2

and to make further progress beyond the achievements
made so far in this regard. The case
q = f(t)g(x) corresponds to Emden - Fower equations[10].
In above equation (2), the function p(t) may be singular at t
= 0.It prolong some well-known IVPs in the
literature[1,7]

In the case b = 0 the existence of the solution for the
problem (2) has been studied in [2],where the authors
illustrated the importance of the condition b=0 for the
existence. We find the conditions for p(t) and q(t,y(t)) to
guarantee the existence of the solution for b # 0.

Existence Theorems

We say that y(t)isasolution to (2) if and only if there
exists some T >0 such that

(1) y(t) and y (t) are absolutely continuous on [0, T],

Savitha. %2,

Faculty of Mathematics, Vivekanandha
College of Arts and Sciences for Women
[Autonomous], Tiruchengode, Namakkal.

(2) y(t) satisfies the equation given in (2) a.e. on [0, T1,
(3) y(¢t) satisfies the initial condition given in (2).

And we generalize the existence theorem of solutions in

[2].
Theorem 1. Let p and q satisfy the following conditions:
(1) p is measurable on [0, 1];

2 p=0;

(3) J, sp(s) ds < ;
(4) there exist a, B with @ < a < g and K > 0 such that

(@) for each t € (0,1], q(t,.) is continuous on [a

(b) for each y € [a ,B], q(.,y) is measurable on [0

© ety =K.

Then a solution to the initial — value problem (2) with b =0
exists.

In [4] the author illustrated the importance of the
condition b =0 for the existence.

To overcome the difficulties in the case b# 0 we
consider a generalization of theorem 1 and show that
the statement of the theorem is true without condition
(c) and with weaker conditions on q(t,y).

Theorem 2. Suppose that p(t) is integrable on the
interval [c,d] for all ¢ >0 and p and g satisfy the
following conditions:

(1) p is measurable on [0, 1];
(2p=0;

(3) there exist @ , B witha <a < B and K >0, and an
integrable (improper, in general) ¢(t) such that

(a) for each t € (0,1], q(t,.) is continuous on [a

Bl
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(b) for each x € [a ,8], q(.,x) is measurable on [0
11

© lqt,y) —e@®) | <K.

Then a solution to the initial — value problem (2) exists for
all b eR such that

b=2/0), @)
where z(t) € C[0,1] is a solution of the problem
z'+p(t)z + ¢(t) =0,
z(0)=a,z(0)=b,t>0. (4

That is, the existence of the problem (4) for some ¢(t).
For the problems with b =0, the initial-value problem
(4) always has a solution z(t) = a, fore(t) = 0. So
Theorem 1 corresponds to the cases ¢(t) =0 and z(t) =
a.

The advantages of Theorem 2 is that the problem
(4) always has asolution for some appropriate ¢(t); for
example, for ¢(t) = — bp(t), ithas a solution z(t) = a +
bt. The conclusion of the theorem remains valid for all
solutions of (4).

It is also clear from the conclusion of Theorem 2
that the interval [0,1] can be taken as [0, t,] for some
small enough ¢, > 0.

Proof :

For t € (0,1], we define the functions
h(®) = exp( Jf, p(s)ds ) = 0,
h(t) = exp(= J; p(s)ds),  (5)
E(t) = [, hi(t) ds.
where h(t) isa bounded function and contionuous for

te (0,1]. It is continuous or has a removable
discontinuity at t =0 and is differentiable a.e.

Show that the problem (2) is equivalent to the following
integral equation

y(t) = fot E(s)elip@idr_ E(t)eh @i

x[q(s,7(s)) = p(s)]ds +z(t). (6)

Let us show the existence of the integral in (6). For any
& > 0,we have

| 5 E(s) el P@4 [q(s,5(5)) — 9(s)]ds]
< k| [} E(s) el PO | @
=k f; [ hy W) e1POU duds|
=|f; fls e~ Py o[} p(@dr duds|.

It follows from u > s on the set[s, 1] X[0,t] that

e~ K Py, Fp@dr — o= fi'pwdv <1 (8)

| [LE(s) eiPO% [q(s,y(5)) — o(s)]ds]|

< kit = — | ©)]
Likewise, we obtain
| 3 E(D) PO [q(s,5(5)) — p(s)]ds]
<k|[,E@®)ellP®% gg|

= k| [ J{ by e/ TPO% duds|
< k|t— t?| (10)

So the right-hand side of (6) makes sense for any
p(t) = 0 and [[q(s, y(s)) — ¢(s)]| < k and

lims_o 5 (E(s) eh 7O —

E(0)el @) x[q(s, y(s))p(s)] ds + z(t) =
fOt(E(S) elip@dr _

E(®)ePO% x[q(s,y(s))p(s)]ds +2(t). (11)

Now calculate the derivatives y'(t) and y" (t) from
(6) by using the Leibniz rule:

Y (0 =(f; E(s) e5 PO% [q(s,y(5)) — ¢(s)]ds
— [ E(®) e PO [q(s,5(5)) — @()ds + 2(t) )

= E(0eh 7 [q(6,y(0)(0)]
—E'(t)f; e1 PO [q(s, y(s))p(s)]ds —
E®)eh P [q(t, y(£)) — p(D)] + 2 (£)

= R (t) [} PO [q(s, ¥())
—(s)]ds +Z (1),

Y (©) = (~hyt) [1 PO [q(s,5()) — p(s)lds
z (t)

=~ hy(0) fy e PO [q(s,¥(5)) — p(s)]ds —
hi(t) PO gt y() — (O] + 2 (¢)

== i) fy PO (s, y) -
p()lds —[q(t, y([®) —@®O)]+z (©). (12)

It follows from (12) that
' () + p(O)x'(t) + 4,y (D)
=— (¢ J, e PO [q(s,¥(5))
~p(9)lds ~[q(t, y(®) — O]+ 2" (t)

—p(® hy(6) fy NP [q(s,y(s)) -
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P()lds+ p()z () + q(t,y(1)) (13)

=z () +p(®O)z (t) + ¢(t)
= 0.

That is, the problem (2) is equivalent to (4). We define
the recurrence relations

Yo(t) = z(¢), (14)
In general,
Yu(t) =J (E(s) PO - E (1) el P
X[q(s, xp-1 () —p(s)]ds + z(t),
(15)
where z(t) is a solution of the problem (4). It follows
from (9), (10), and (14) that a < y,(t) < B for a <

Vo_1(t) <B and for small enough t € [0,¢,).

For t,, t, € [0, t,), from equation (9) and (10),we have

|yn (tZ) - yn(tl)l =

to s s
| J- (E(s) efl P(T)dT_E(t) efl p(r)dr)
t1

X [q(s, yn-1(s)) — @(s)]ds |

<2K[ (6 - L) - (6 - D)

<2K(t —t)(A+2 +2
< K(t, — t,). (16)

for some constant K;. Thus, the sequence y,(t) is
uniformly bounded and uniformly continuous. By using
Ascoli — Arzela lemma, there exists a continuous y(t)
such that y,, (t) - y(¢) uniformly on [0,T], for any
fixed Te [0, t;). Without loss of generality, say y,(t) -
y(t). Then

Y(O=lim, o, [} E(s) e PO — E(£) eh )
X[q(s, ¥ (s)) — @(s)]ds+z(t)  (17)
INGIG)! eiP@dr _ p(p) elip@dry
X [q(s,y(s)) — @(s)]lds + z(D),
using the lebesgue dominated convergence theorem.

Note that the positivity condition of the function p(t) can
be weakened. the positivity of p(t) has been used in
the  proof of Theorem 2 to show the (removable)
continuity of the function h(t) at 0. Assuming that the
following condition holds

(M [p| is integrable on [c,d]

for any fixed c,d € (0,1], c < dand

M < fcd p(s)ds < +oo;
for some fixed M (18)
we can prove a similar theorem

Theorem 3. The conclusion of the Theorem 2 remains valid
if condition (2) is replaced by (i) .

Proof: We need to make some modifications to the
proof of Theorem 2; for example, instead of the
inequality

e~ i P@dv [} p(D)dr <1, (19)
for u >s, we have
el PO [r@dr — = [ pWdv < oL
(20)

for small enough u and s. Note that the existence of the
solution of the problems like

" am Am-1 ai

YoH (Ch+ st AT AW@Y + a6y () =0,

x(0)=a, x0)=b, t>0, (21)

follows from theorem 2, where A(t) is differentiable
function, q(t,x) satisfies the conditions (3), a4,
a,, .., a,, are real constants, and a,, > 0. Indeed for
small enough ¢t we have p(t) > 0 and therefore the
hypotheses of theorem 2 and 3 are true for small enough
te [0T]; for b=0 the problem (4) has a
solution z(t) = a, and so (21) has-a solution for all
bounded q(t,y(t)) with carathedory conditions, but for
b =0 the problem (21) has a solution for q(t,y(t))
with

laty@)+ b+ 5+, + D<K

some small enough neighbourhood of 0, since the
corresponding problem (4) can be taken (e.g.) as

’

! a aAm-—-1 aq ’ a am -1
ARG R R R () L Jo =

+24 A1) =0,

2(0)= a,z(0)=b,t>0, (22)

has a solution z(t) = a+ bt. For b # 0 the condition
q(t,y(t)) can be changed by using different functions for
@(t) can be taken as

_b b1
(p(t)_t_z+tz_1+“.

bam ba;, —1
tm tm— m—2 (

= ban,_;)

1 bam—1am—2
+tm_3 ( am - bam—S)

+l (bam—1a2 _ ba1)+ bam—lal bA(t) ba‘m 1
t am am

am

z +(am+a’” LA

+8 4 A0z + () =0,
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z(0) =a,z (0)=b,t >0, (24)

with solution z(t) = a + bt — (bam—l) 2.

2am

continuing this process, the condition g (¢, y(t)) can be

reduced to | q(¢, y(t)) +b:n§" | <K.

The inequalities (7),(8),(9) and (10) can be easily
established for the function q(t, y) with

la(t, y(®) = o(&)] < m(t), (25)
where m(t) is absolutely integrable function.
Applications

By using existence and uniqueness criteria, we can find the
wide classes of the initial- value problems. Adding a
function ¢@(t) to q(¢,y) in the class of solvable problem, it
can be extended, where ¢(t) is taken from equation (4) with
a solution.

Yy +p@®y +o(ty®) =0,
y(0) = a,y' (0)=b,t >0, (26)
has a solution,then
vy +p®)y +o(t,y®) +q(t,y®) =0,
y(0) =a,y (0)=b,t >0, (27)

where q(t,y) is a bounded function with caratheodary
conditions, has also a solution.

Example. The problem
Y +p®y +q(t,y®) - bp(t) =0,
y(0) = a,y’ (0)=b,t =0, (28)

has a solution for all bounded q(t,y(t)). Indeed the
problem

z () +p)z (t) — bp(t) = 0,
z(0) =a,z (0)=b, (29)

has a solution z(t) = bt + a Then the existence of solution
of (28) follows from Theorem 2.

Conclusion

We extended the class of second order- singular 1\VVPs and
established difficulties related to the singularity overcome
for the problem (2) with p > 0 or

M < fcdp(s)ds < 4o0;

for some fixed M. (30)

The existence of a solution reduced to finding a solution
some problems like (4). The conditions are weaker than the
previously known is obtained and can be easily reduced to
several special cases.
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